Integral of tan x
In this paper, we will discuss how to integrate the following tan (x). The technique used is the integration of substitution techniques.
$ ∫ tan \ (x) \ dx = ∫ \frac{sin \ (x)}{cos \ (x)} \ dx $
Notice the integran on the right, we can assume u = cos (x) because the derivatives of cos (x) are sin (x).
If u = cos (x) then du = sin (x) dx so we get:
$ \begin{align} ∫ tan \ (x) \ dx &= ∫ \frac{sin \ (x)}{cos \ (x)} \ dx \\ &= ∫ \frac{du}{u} \\ &= ln \ (u) \\ &= ln \ (cos \ x) \end{align} $
So, $ ∫ tan \ (x) \ dx = ln \ (cos \ x) + C $
Note:
$ ∫ \frac{1}{x} \ dx = ln \ (x) + C $
ln: natural logarithm.
Hopefully this article useful for readers.
Post a Comment for "Integral of tan x"